Version Stamps — Decentralized Version Vectors

Paulo Sérgio Almeida Carlos Baquero Victor Fonte

{psa,cbm,vff}0di.uminho.pt

Departamento de Informatica, Universidade do Minho

Largo do Pago, 4709 Braga Codex

Abstract

Version vectors and their variants play a central role in update tracking in optimistic dis-
tributed systems. Existing mechanisms for a variable number of participants use a mapping
from identities to integers, and rely on some form of global configuration or distributed naming
protocol to assign unique identifiers to each participant. These approaches are incompatible
with replica creation under arbitrary partitions, a typical mode of operation in mobile or poorly
connected environments. We present an update tracking mechanism that overcomes this lim-
itation; it departs from the traditional mapping and avoids the use of integer counters, while

providing all the functionality of version vectors in what concerns version tracking.

Keywords: Replication, causality, version vector, update tracking, naming, arbitrary partition.

Technical Area: Mobile computing.

1 Introduction

Mobile computing has evolved in the previous decade into what is now a common mode of operation
for a significant share of distributed systems. This mobile context helped to promote optimistic
strategies and, with them, the need for version vectors in update tracking. Nevertheless, the
same mobile context also brings to surface some of the limitations of version vectors, in particular
concerning the identification of participant entities in the computation in such potentially dynamic
environments.

The concept of version vector [12] is connected to the twin concept of vector clock [5, 10],
and both are rooted on causality in distributed systems [9]. These concepts share an equivalent
structure that consists in a mapping from process/replica identifiers to integer counters, I < N. In
practice, version vectors and vector clocks are more often represented as a fixed sequence of integer
counters, {1,2,...,k} — N, which is a reasonable choice as long as the number of entities is known
in advance. Figure 1 shows an execution in a replicated system where fixed size version vectors
are used to track updates to each of the three replicas in the system. The direction of evolution is

represented by the arrows, with dot annotated arrows, —, depicting updates on a given element of

the system.
[0] 1 [1] M2 7
A 0| —==10 0 ° 0
| 0 | 0 | 0 | | 0 |
[0] [1] M1 7
B 0 0 0
| 0 | | 0] | 1]
[0] 0 M1
C 0| —==1]0 0
| 0 | 1 | 1]

Figure 1: Use of version vectors to track updates among three replicas.

Although structurally similar, vector clocks and version vectors play different roles on dis-
tributed systems. Vector clocks are known to provide a view over a distributed computation, differ-

ent events being identified by distinct vector clock values!. The role of version vectors is to detect

'In Fidge Logical Time, two events share the same clock value when representing a synchronization event between
two instances. Usually, asynchronous message passing is assumed and this does not occur.

mutual inconsistency among replicas and to determine the most recent version among two causally
related replicas. All replicas that have seen the same updates, typically after a synchronization
procedure, share the same version vector value — see again Figure 1.

A well known problem of version vectors and vector clocks is that they are unbounded in size
[14, 17]. In fact, they are twice unbounded. Each integer counter can grow indefinitely and the
number of identified entities can also grow unbounded.

A less known problem, which we address in this paper, resides in the identification requirement
of both version vectors and vector clocks [2, 13]. Each participating entity must be assigned a
unique identifier in order to obtain a proper mapping to integer counters. In a well connected
environment, it would be simple to request a unique identifier from a server or to run a distributed
protocol for the generation of a unique identifier. Such protocols are not possible in the current
mobile setting when subject to partitioned operation. Moreover, significant technology and research
trends are pointing towards wireless ad hoc networking setups, where entities are autonomous and
operate in local clusters on a proximity basis [11, 3, 6]. In such environments, partitioned operation
is the common mode of operation and an answer to the identification problem must be sought.

In circumstances in which we can afford probabilistically unique identifiers, algorithms may
resort to some form of random based ids in order to cope with replica creation under partitioned
environments. Contrary to these approaches, our work does not rely on probabilistic uniqueness

and assumes that guaranteed unique identifiers must be provided.

1.1 Fixed vs. Variable number of Replicas

Classic replication systems operate over a well defined number of replicas. Such is the case of the
system depicted in Figure 1. The more general case of a dynamic replication system, introduces the
need to accommodate replica creation and retirement. One approach would be to represent replica
creation by introducing new horizontal lines and new replica identifiers in the system representation,
and likewise to discontinue those lines towards the future, upon replica retirement.

The approach we follow, instead, represents all the functionality of replica creation, synchro-
nization and retirement by two simple constructs: replica forking and joining of replicas. Synchro-

nization can then be represented by joining two replicas and forking the resulting one. An example

is presented in Figure 2.

di g1

, /

a; — a2 61 _— fl

AN

C1 —O>CQ —O> C3

time

Figure 2: Some possible evolutions of data elements showing two frontiers of coexisting elements
(denoted by single and double-dotted lines).

a—25 4 ~a" a—>=¢! a’”

b v b . - b \b' B!

c——= " o ,/ \ "
. C C C

Figure 3: Encoding a fixed number of replicas (left) under fork-and-join dynamics (right).

This dynamic replication system is more general than the fixed one and can be used to encode
the latter. In Figure 3 we give the intuition to this encoding by representing under fork-and-join
dynamics a traditional version vector setting for three replicas, using the same names for elements
in equivalent positions and omitting the name of extra elements. From this example, it is also easy

to see that an equivalent mapping can be found for runs with a variable number of replicas.

1.2 Frontier Elements vs. All Elements

In certain circumstances, one may want to relate any two elements occurring in the distributed
evolution, that is, all elements in the distributed computation are subject to ordering. For instance,
in the computation depicted in Figure 2, one may want to inquire how ¢, and a; relate and determine
that a1 is in the past of co. Such querying could be necessary when debugging a recorded execution
of the replicated system.

In other circumstances, namely in update tracking, one may only need to relate coexisting
elements, that is, only elements in the same reachable configuration. If this is the case, there

wouldn’t make sense to query how ¢y and a; relate since these elements never coexist in any arbitrary

4

system evolution. In this sense, a reachable configuration is perceived as forming a frontier. Any
two elements that are connected by a direct arrowed path never coexist, and consequently never
belong to the same frontier of contemporaneous elements.

If we concentrate on element ¢y we can observe that, for the depicted evolution, there are two
possible frontiers to which ¢z can belong. The first, represented by a single dotted line, might occur
if ¢; gave place to co before the bifurcation of b;. The second frontier, double dotted, occurs if by’s
bifurcation is prior to co’s transformation into c3. In fact, it is possible that both frontiers occur
in a particular system run.

In any case, an ordering system that targets ordering among frontier elements should have
enough information to relate any two events that can occur in any possible system frontier. It is
intuitive to accept that ordering of frontier elements is sufficient for version management, since
only coexisting elements are subject to queries on their relation properties. We believe that this
observation can have an important impact on the design of future version management techniques.

Under the distinction that we have just presented it is now clear that traditional version vectors
are overly expressive: they are capable of overall ordering albeit in their application context a
frontier ordering would be sufficient. One could conjecture that a compressed substitute of version
vectors would be conceivable for traditional settings with fixed numbers of entities, and such sub-
stitute would not contradict Charron-Bost minimality results [4] (stated in the context of vector
clocks but easily inferable for version vectors). This is not, however, the purpose of this article.

It is easy to conclude that classical (fixed size) version vectors are associated to frontiers of
constant size, the vector dimension, while dynamic forms of version vectors, c.f. [14], act on
variable frontiers.

Our goal is to develop a decentralized, autonomous form of version vectors — named wersion
stamps — that allows frontier ordering with autonomous creation of identifiers from any available
replica. By considering frontier ordering we seek a compact solution to the identification problem

that can act as an alternative to version vectors in dynamic settings.

1.3 Structure of the Paper

The rest of the paper is structured as follows. The next section introduces a model of causal
histories of events, using a global view on events. Sections 3 and 4 develop the concept of version
stamps and introduce a set of invariants over their structure. Section 5 establishes a functional
equivalence between version stamps and causal histories, and Section 6 refines the version stamp

model while keeping the equivalence. Section 7 concludes the article.

2 Causal Histories in Dynamic Settings

Detection of version dependencies among data elements can be constructed over a notion of causal
history of update events [15]. In the construction of such history we assume a global view over the
system in order to obtain a description that is intuitively correct. Afterwards, a version stamping
system that does not rely on a global view will be constructed and proved to represent the same
dependency order between elements that can be derived from the causal history.

To model causal histories we keep a mapping from element identities to sets of update events.
Since we are only interested in comparing frontier elements, we only keep in the mapping the set of
elements that define each frontier (thus elements that may have existed in its past are not included).
This map can be seen as representing a “current configuration”.

Operations (update, fork and join) are described by transformations between configurations.

We use the traditional notation for functions: {e» {z},b — {y,z},e» {z,2,w}} represents

a function that maps elements a, b and c¢ to sets of events; some events (like z and z) can be in the

causal history of several elements.

Notation We use {F;ea» z,b — y} to represent a function that maps a to z, b to y and that
maps other elements in the domain according to function F. This notation expresses also that
both a and b do not belong to the domain of F'. This is useful to perform “pattern matching” over
functions (Note that using F' U {&» z,b — y} does not imply that z,y ¢ dom(F').). A similar
notation can be used for ‘pattern matching’ over sets: {4;a,b} denotes a set A U {a,b} such that

a,b ¢ A.

Definition 2.1 An initial configuration can be captured by {e» {}} and represents a system with

one data element. From any reachable configuration, the following transformations can occur:

o {C;ax A} uPditl;(a){C; a — AU{e}} with e ¢ E({C;a» A}).

o {Ciax A} X0ib s A e A).

o {Ciax Ab s BY 91006y AUB).
With £({C}) = U{C(i) | i € dom(C)}

Although mapping only “current” elements, the corresponding event sets store all update events
that have occurred in the causal history of each element: events are not discarded. A global view
is present because each update event has a global unique identity that cannot be computed by only
looking at the element being updated.

When querying the relationship between elements, according to known updates, the goal is to
distinguish three possible situations: Equivalence — the same set of events; Obsolescence — all the
update events and at least one more in the dominating element; Mutual inconsistency — at least

one different update event in each element. Given a configuration {C;a — X,b+— Y},
e g equivalent to biff X =Y.
e g obsolete relative to biff X C Y.
e ¢ inconsistent with biff X Y and Y € X.

Comparison of elements in a frontier can be deduced from the causal histories as defined above.
In fact, all these situations are represented by a pre-order on the elements of a given frontier. Given

a configuration C', for any two elements a, b in the domain of C, we have:
a gc b<= C(a) CC(b)

The simplicity of this model is only possible in the presence of a global view over the set of

events in the system.

3 Version Stamps

Our goal is to devise a stamping mechanism that can be used to infer the order between frontier
elements that is induced by comparing sets of causal histories (as described above). The mechanism
must not depend on any form of global view; it must work autonomously and rely only on the local
information that is kept within the data elements being operated upon. An efficient use of space is

also highly desirable in order to support a practical use.

[| 00] [1]00+01+1]
s v

o /I [0+1]
AN v
e 0 1014 1] i

B ESIPENR

Figure 4: Version Stamps.

We now present an informal description of version stamps. Figure 4 presents the example from
Figure 2 where the version stamp corresponding to each element is shown. Each version stamp is
made up of two components, which we represent as [update | id]. The id component acts as the
element identity: it distinguishes the element from all other coexisting elements (in a frontier). The
update component stores information about which updates are known to a given element. It avoids
the use of counters and consists of a single id-like value which collects id’s as they were (in ancestor
elements) when updates were performed. Each component is presented as a sum of binary strings.

The first two version stamps in the left show that when the frontier is only one element updates
do not need to have expression on the stamps. In fact, the update operation simply copies id into
update; this means that after an update, subsequent ones do not affect a version stamp. This is an
example of the goal, in the design of version stamps, to discard information that is irrelevant to
the comparison of coexisting elements in a frontier.

At a fork operation the id in the resulting stamps is recursively constructed by appending either
0 or 1 to the right of the ancestor id. A fork does not modify the update component as it does not
introduce any update event (the ones tracked by the mechanism).

When a join between two elements occurs the resulting id is built by merging the two ancestor

id’s. The update component is built likewise, merging the two ancestor update components; this

reflects the combined knowledge of past updates.

An important property of the mechanism is the possible simplification of stamps after joins. The
intuition is that a join decreases the number of elements in a frontier, leading to smaller identities
being needed to distinguish them. A fork followed by a join of the resulting elements should result
in an element with the original id. The intermediate elements ¢d’s only differ in the appended 0
and 1; after being merged they are collapsed into the original id. (A simplification of id induces
also a simplification of update.) Some analogies can be made: the simplification of minterms in
boolean algebra, the collapsing of neighbour blocks in the buddy memory allocation system [8]
or collecting weights in Huang’s termination detection algorithm [7]. Likewise, id’s denote non-
intersecting parts of ‘the whole’; their complexity adjusts dynamically, reflecting the granularity of

the frontier of coexisting elements.

3.1 Synopsis of formal presentation

The locality goal of the mechanism can be seen to be met by looking at the definition of the
operations (below). To prove that version stamps can be used to infer the same order as induced
by causal histories, we split the presentation of version stamps and proof of correctness in several
steps.

We start by presenting a non-reducing version of the mechanism, in which no simplification
at joins occur, and prove several auxiliary invariants that characterize some properties of version
stamps. Afterwards, we show that both causal histories and the non-reducing version of the mech-
anism induce the same pre-order between elements at any given frontier. To do this we must first
prove a stronger result that implies the required equivalence. Finally, we present a rewriting rule
on version stamps that represents the simplification after a join. We show that it preserves all

previously defined invariants as well as the proved result relating causal histories to version stamps.

4 Version Stamps: Non-Reducing

A version stamp is a pair (u,), respectively the update and the id. Both components share the

same structure, and are members of a set N (names). We now characterize N.

Let ¥* be the partially ordered set of all finite binary strings (sequences of {0,1}) ordered by:

r C s < r is a prefix of s.

We have, for example, 01 C 011 and 01 || 00 (we use || to denote non-comparability). The null

string is denoted by ¢; it constitutes the bottom of ¥*: € C s for all strings s.

Definition 4.1 N is the set of all finite antichains in X*, ordered by:

n1 Eno <= Vr € ni;.ds € no.r C s.

For example, {0,01} is not a valid element of N because 0 C 01, and we have {00,011} C
{000,011,1} and {00, 10} Z {000,011,1} as well.

As the order defined on N is the classic order in lower powerdomains [16], at first sight looks
like we are in the presence of a pre-order. However, N was defined in a way so that it is a partial

order and not merely a pre-order. More specifically:

Proposition 4.2 N is a partial order; moreover it is a join semillatice with join given by:

nlUnyg={s€niUng|(SCrenUng) =>s=r}

(That is the join of two names is the set of all maximal elements in their union.)
Proof N is isomorphic to O(X*) (the down-sets of strings) ordered by inclusion, which is a

complete lattice. O

Informally, the antichains in N can be seen to represent the maximal elements of down-sets, the
order defined corresponds to inclusion of down-sets and the join corresponds to union of down-sets.
For example, {00,011} LI {000,01,1} = {000,011,1}.

We now proceed with the definition of the first model of version stamps, in which we do not
include simplification after joins. For presentation purposes, we describe the operations on version
stamps using configurations that map elements to version stamps. This facilitates relating causal

histories to version stamps. It is important to emphasize that this does not, however, imply that

10

operations require a global view: the operations manipulate the version stamps of the operated
upon elements, which themselves require no global view (contrary to the what happens in causal
histories, where an update operation makes use of globally unique update events). The order

derived from stamps only makes use of local stamp information as well.

Definition 4.3 An initial configuration can be captured by {a — ({€},{€})} and represents a
system with one data element. From any reachable configuration, the following transformations can

occur:

o (Vien (i)} T Viate).

.- fork(a

o {Via» (u,i)}){V;a' — (u,10),a"” — (u,11)} with nx = {sz | s € n},z € {0,1} being

the concatenation of a digit lifted to sets of strings.
. . join(a,b . .
o {Vie (uayia) b (un, i) P {Vier (g Uy, ia i)}

The update component simply copies the id into update; fork maintains the update component
and appends either a 0 or a 1 to each string in the 4d component; the join operation performs joins
of names for each component. It is easy to see that under the above definitions, the components in
the resulting stamps are well-formed names (antichains of strings).

We now define the pre-order on the elements of a configuration V obtained from the version
stamps in V, that will be used to make the correspondence with causal histories. Given a configu-

ration V, for any two elements a,b in the domain of V', we have:
a ’EV b <= fst(V(a)) C fst(V(b)).

Towards proving a proposition that relates causal histories with version stamps we establish

now some auxiliary properties of configurations of version stamps.
Invariant 4.4 (I;) In any reachable configuration V: ¥(a, (u,1)) € V.u C 1.

Proof See Appendix. O

11

This invariant states that in a version stamp the update is always dominated by id. This
property will ensure, on reducible version stamps models, that there is no obsolete information on

update when replicas converge and id simplifications are possible.

Invariant 4.5 (I3) In any reachable configuration V: V{z — (uz,iz),y — (uy,iy)} C V. Vr €

ig,S €dy. T || 5.
Proof See Appendix. O

This second invariant brings attention to some structural properties of the id’s that are present
in a configuration. In a given frontier of elements each string that is present in a given id will be
non-comparable to all other strings in the same or another id. Consequently, all id’s in a frontier

are non-comparable.

Invariant 4.6 (/[3) In any reachable configuration V: V{z — (ug,iz),y — (uy,iy)} C V. Vr €

ug. {r} Ciy = {r} C uy.
Proof See Appendix. O

This invariant implies a weaker one: V{z — (us,iz),y — (uy,iy)} CT V. uy C iy = uy T uy.
The pertinence of this last invariant can be illustrated by an example.

Suppose two non-comparable elements a || b with version stamps (uq,%4), (up,%). If an update
occurs on one of them, for instance update(a), we must be sure that a (a’ after update) remains
non-comparable to b, and b C a’ does not happen (recall that causal histories ensure this by using
fresh event names on updates). Since update(a) produces version stamp (ig4,%,) then our property
up C iy = up C u, means that in order for b C a’ to occur, then b C a must also occur in the first

place.

5 Correspondence between causal histories and version stamps

We now show that version stamps as defined above can be used to derive the pre-order between

elements according to inclusion of causal histories. As we described above, comparing elements in

12

a configuration C of causal histories can be done according to:
a EC b <= C(a) C C(b).

If we have a configuration V' of version stamps that corresponds to C' (whose version stamps are

derived from the same system execution as C), being the order between elements obtained from V:
a EV b <= fst(V(a)) C fst(V (b)),

we want to prove that both C and V induce the same pre-order, i.e. EC = EV. This means we
want to show that:

C(a) C C(b) © fst(V(a)) C fst(V (b))

It can be seen that a direct proof by induction of this equivalence fails. This failure is in itself
an interesting result and can be briefly explained by the following insight: knowing how elements
compare according to causal history inclusion in a given configuration is not enough to know how
they will compare in the configuration obtained after performing a given operation. In other words,
even though we are not interested in knowing the exact update events in causal histories, we need
to know something more than just how they compare even if comparison is all we are interested in.

Technically, we need to prove a stronger equivalence, which will be used as a stronger induction
hypothesis in the proof. We show then, the following stronger proposition. (We use fst and snd for
the projections on the first and second components of a pair. We also use the notation f[A] for the

direct image of A under f, that is f[A] = {f(z) | z € A}.)

Proposition 5.1 Given any distributed execution with causal histories Cy — C1 — ... — C}
and with version stamps Vo — Vi — ... — Vi, it is true that dom(Cy) = dom(Vy) and

Cr(z) C UCk[S] & st(Vi(x)) C | £st[Vk[S]], for all z € dom(Ck) and § C S C dom(Cy).
Proof See Appendix. O
From the previous proposition, the result we want to show follows, as stated by:

Corollary 5.2 Given any distributed execution with causal histories Co — Cy — ... — Cy,

13

and with version stamps Vo — Vi — ... — Vi, it is true that dom(Cy) = dom(Vy) and

Cr(z) C Ci(y) & 1st(Vi(z)) C fst(Vk(y)), for all z,y in dom(Cy).

Proof Substitute S by {y} in the previous proposition. O

6 Simplifying version stamps upon joins

We now describe a rewriting rule that can be applied to a version stamp and perform the simpli-
fications that have been informally introduced in Figure 4. Such simplifications reflect, as already
discussed, the dynamic adaptation of id’s to the ‘shape’ of the frontier. This simplification is essen-
tial towards obtaining a realistic implementation, by minimizing the space requirements of version
stamps.

The simplification of a version stamp that results from a join is attempted by repeatedly applying

the following rewriting rule until it is no longer possible to apply it.

(u, {35 50, 51}) == (u', {i5 5}),

with
, u\ {s0,s1} U{s} ifs0 € uor sl € u,
u

U otherwise.

One property of a rewriting (u,i) —(u',4') that follows trivially from the order on names is
that v’ C u and i’ C 4. As the order on names is well-founded (there are no infinite descending
chains of names), only a finite number of rewritings can be applied to a stamp. It is also easy to
see that the rewriting is confluent. Therefore, a stamp can be rewritten into a unique normal form.

We omit the proof of confluence as it is intuitive and concentrate on the correctness of the
transformation. For that we need to show that applying a rewriting (u, {i;s0,s1}) = (u/, {i;s})
to a version stamp in a configuration V results in a configuration V'’ where: the rewritten version
stamp consists of two wellformed names (antichains), the invariants I1, I, Is are maintained, and

the relation from dom(V') to P(dom(V')) expressed by

R(V) = {(z,5) | fst(V (2)) T | |&t[V[S]]}

14

is the same in V', i.e. R(V) = R(V').

Wellformedness of v’ and {i;s} Regarding {i; s}, as {3; s0, s1} is an antichain, we have for every
r € i that 7 || s0 and r || s1; therefore r || s, which means that {i; s} is also an antichain. Regarding
o, if neither s0 nor s1 belong to u, then v’ = u. Otherwise, we have for every r € u\ {s0, s1} that:
sO IZ 7 and s1 IZ r (because u C {7; s0,s1}), and r £ s (because u is an antichain); therefore, r || s,

which means that « \ {s0, s1} U {s} is an antichain.

Invariant 7; This is a local invariant on each stamp; it suffices to show that «' C {i; s}. If neither
s0 nor sl belong to u, then ' = u C {i;s} (as u C {7; 0, s1}). Otherwise, it is also trivial that

u' =u\ {so,s1} U{s} C {i;s}, for the same reason.

Invariant I, This invariant involves pairs of stamps; it suffices to consider the cases where the
rewritten stamp is involved. For any other stamp (uz,%;) in V and string r € i,, due to Invariant
I, on V we have: r || s0, r || sl, therefore r || s; and also r || ¢ for all ¢ € i; therefore r || v for all

strings v € {7;s}.

Invariant I3 The invariant involves expressions of the form {r} C iy, = {r} C uy, for stamps
(Ug,ig), (Uy,iy), and r € ug. As for the previous invariant, it suffices to consider the cases where

the rewritten stamp is involved.

(u', {i; s}) = (uy,iy) Suppose {r} C {i;s}; then, {r} C {i;s0,s1} and by I3 on configuration V
{r} C wu. If neither sO nor sl belong to u, then v’ = u and {r} C «'. Otherwise, as

{r} C {i; s}, we have r # s0 and r # s1; therefore, {r} C u\ {so,s1} U {s} = u .

u',{i;s}) = (ug, ;) Suppose {r} C i, with r € u'. If neither sO nor sl belong to u, then v’ = u,
y

T € u; therefore, by I3 on V, we have {r} C u,. Otherwise, in which case v’ = u\{so, s1}U{s},

we have r # s0 and r # s1; also r # s, otherwise we would have {s} C iy, impossible by I,

on V; therefore r € v and by Is on V we have {r} C wu,.

Preservation of R We prove that applying a rewriting (u, {i; s0,51}) —(u', {4; s}) to a version

stamp in a configuration V results in a configuration V' so that R(V) = R(V'). First we show that

15

z R(V) S =z R(V') S. Suppose z R(V) S, i.e. fst(V(z)) C [|£fst[V[S]]. We must consider two

cases:

rewriting of V(z) If z € S then z R(V’) S holds trivially; if z ¢ S, as ' C u, we have v/ C u C

L] £st[V'[S]] = | fst[V'[S]].

rewriting of V(y) with y € S The case z = y is trivial (and already covered above). Otherwise
xz #y;let Z =25\ {y}; we have V|Z = V'|Z and also V(z) = V'(z); therefore fst(V'(z)) C
Ll fst[V'[Z]]Uu. If sO & w and s1 & u we have ' = w and z R(V') S holds trivially. Otherwise,
in which case v’ = u\ {s0,s1} U{s}, due to I; and I» (and z # y) we have that s0 and s1 do
not belong to fst(V (z)); therefore the inequality above still holds replacing u by «', and thus
we have z R(V') S.

Now we show that z R(V') S = z R(V) S. Suppose z R(V') S, i.e. fst(V'(z)) C |]fst[V'[S]]-

We must consider two cases:

rewriting of V(y) with y € S The case z = y is trivial; if z # y, given that v’ C u, we have
fst(V(z)) = fst(V'(z)) C || £st[V'[S]] E || fst[V[S]].

rewriting of V(z) The case z € S is trivial; in the case ¢ S, we have that no string in fst[V'[S]]
is greater than or equal to s, otherwise, due to I; there would exist a string r in snd[V'[S]]
such that s C r, something impossible because, due to I, no string in snd[V'[S]] can be
comparable to s Therefore, s € u' which means we are in the case where v’ = u and so we

have also fst(V (z)) C | | fst[V[S]]-

7 Conclusions

Both version vectors and vector clocks rely on the availability of identifiers that can support their
ordering technique. We have argued that operation under partitioned operation and mobility
prevents the use of traditional techniques for unique identifier generation, and that these operation
modes are already common and call for appropriate solutions. Additionally, data management
under these operation modes is mostly based on optimistic techniques and therefore requires robust

dependency tracking solutions.

16

In this article we addressed the identification problem in the context of data dependency track-
ing. In order to achieve this goal we had to distinguish the ordering of elements in a frontier from
the ordering of any two elements in a system run, thus contributing to the clarification of the role of
version vectors. This distinction, together with the presence of the identification problem, raises a
set of research lines, one of which was developed in the article. The other lines concern the design of
decentralized vector clocks, by exploring autonomous identifiers on overall ordering, and the search
for a more compact (possibly bound) form of version vectors on settings with fixed identifiers and
frontier ordering.

We have developed a model of causal histories that is adapted to dynamic settings exhibiting
autonomous interaction. We presented a version stamping mechanism that only relies on infor-
mation that is locally available, overcoming the need for a global view. Finally, we established
and proved a correspondence which states that the relation between any two given elements in a
frontier, according to inclusion of causal histories, can be computed by their version stamps.

Version stamps, having solved the autonomous identification problem while addressing frontier
ordering, provide an adequate dependency tracking mechanism that operates in scenarios where
this functionality was not available.

The presented version stamp mechanism has been implemented in the PANASYNC project?
[1]. This project is an application of version stamps to file replication, providing a set of tools
for dependency tracking on single file copies. The project provides a C++ STL based library

implementing version stamps.

*http://sourceforge.net/projects/panasync.

17

References

1]

[10]

Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Panasync: Dependency tracking
among file copies. In Paulo Guedes, editor, Ninth ACM SIGOPS European Workshop, pages
7-12. DIKU - University of Copenhagen, 2000.

Carlos Baquero and Francisco Moura. Causality in autonomous mobile systems. In Third
European Research Seminar on Advances in Distributed Systems. Broadcast, EPFL-LSE, April
1999.

Maria Butrico, Henry Chang, Norman Cohen, and Dennis G. Shea. Data synchronization in
mobile network computer — reference specification. In WMR’98, ECOOP’98 Workshop Reader.

Springer Verlag, 1998.

Bernadette Charron-Bost. Concerning the size of logical clocks in distributed systems. Infor-

mation Processing Letters, 39:11-16, 1991.

Colin Fidge. Timestamps in message-passing systems that preserve the partial ordering. In

11th Australian Computer Science Conference, pages 55—66, 1989.

Jaap Haartsen, Mahmoud Naghshineh, Jon Inouye, Olaf Joeressen, and Warren Allen. Blue-
tooth: Vision, goals, and architecture. ACM Mobile Computing and Communications Review,

2(4):38-45, October 1998.

Shing-Tsaan Huang. Detecting termination of distributed computations by external agents. In
Proceedings of the 9th International Conference on Distributed Computing Systems (ICDCS),
pages 79-84, Washington, DC, 1989. IEEE Computer Society.

Kenneth C. Knowlton. A fast storage allocator. Communications of the ACM, 8(10):623-625,
1965.

Leslie Lamport. Time, clocks and the ordering of events in a distributed system. Communi-

cations of the ACM, 21(7):558-565, July 1978.

Friedemann Mattern. Virtual time and global clocks in distributed systems. In Workshop on

Parallel and Distributed Algorithms, pages 215-226, 1989.

18

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Robert Morris, John Jannoti, Frans Kaashoek, Jinyang Li, and Douglas Decouto. Carnet:
A scalable ad hoc wireless network system. In Paulo Guedes, editor, Ninth ACM SIGOPS

European Workshop, pages 61-65. DIKU - University of Copenhagen, 2000.

D. Stott Parker, Gerald Popek, Gerard Rudisin, Allen Stoughton, Bruce Walker, Evelyn Wal-
ton, Johanna Chow, David Edwards, Stephen Kiser, and Charles Kline. Detection of mutual
inconsistency in distributed systems. Transactions on Software Engineering, 9(3):240-246,

1983.

Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer, and Alan J. Demers.
Flexible update propagation for weakly consistent replication. In Sizteen ACM Symposium on

Operating Systems Principles, Saint Malo, France, October 1997.

David Ratner, Peter Reiher, and Gerald Popek. Dynamic version vector maintenance. Tech-
nical Report CSD-970022, Department of Computer Science, University of California, Los
Angeles, 1997.

R. Schwarz and F. Mattern. Detecting causal relationships in distributed computations: In

search of the holy grail. Distributed Computing, 3(7):149-174, 1994.
M. B. Smyth. Power domains. Journal of Computer and System Sciences, 16:23-36, 1978.

FJ Torres-Rojas and M. Ahamad. Plausible clocks: constant size logical clocks for distributed

systems. Distributed Computing, 12(4):179-196, 1999.

19

A Proof of Invariants and Main Proposition
Invariant 4.4. (I;) In any reachable configuration V: Va + (u,i) € V.u C i.

Proof The proof is by induction. In the base case we have Vy = {a — ({€}, {€})}. The invariant
holds since € C €. The inductive step will suppose that our invariant I; holds on a given environment
V and check for its validity under V' that results from applying any of the operations update, fork,

join.

update(a) From the definition of the operation we have a new element o’ with V'(a’) = (4,1).

Since ¢ C 4 the invariant holds.

fork(a) From the definition we have V(a) = (u,4) and u C i by induction hypothesis. In V' we
have V'(a’) = (u,i0) and V'(a") = (u,i1). We verify that « C i0 holds by checking the definition

of name concatenation together with hypothesis u C ¢. The same applies to u C 71.

join(a,b) From the definition and by induction hypothesis we have in V', u, C i, and up C 3. We
must infer in V' that u, U up C 4, U 4,. This proposition can be directly deduced from the above

two hypothesis due to the properties of the join semi-lattice. O

Invariant 4.5. (Iy) In any reachable configuration V: V{z — (ug,iz),y — (uy,iy)} C V. Vr €

ig,S € dy. T || 5.

Proof The proof is again by induction using the same structure as above. In the base case there

are no distinct 44,4, so the invariant holds trivially.

update(a) Under this operation knowing that V(a) = (u,) holds, V'(a') = (4,7) will hold in V".

Since both id’s are ¢ the invariant, true in V by hypothesis, is preserved.
) y hyp

fork(a) From the definition we have V(a) = (u,7) and from induction hypothesis, all i, # 7 in
V exhibit Vr € iz, s € 4. 7 || s. In V' we have V'(a’) = (u,10),V'(a") = (u,i1). From iterated

concatenation, on fork definition, we infer ¢ || v = ¢0 || v (as well as ¢1 || v) for any t,v € S.

20

This and the induction hypothesis proves Vr € iz,s € i0 r || s, with identical reasoning for 1.

Considering 70 and i1, Vr € il,s € i0. 7 || s results from iterated concatenation.

join(a,b) From the definition we have V(a) = (ug,%4),V(b) = (up,%p) and from induction hy-
pothesis, all iy # i, # iy exhibit Vr € izt € iq,v € 4.7 || t AT || v At || v. Consequently
Vr € ig,8 € (ig Uip)-7 || 8- In V' we have V'(c) = (ug U up,iq U ip). Since iq Uiy C ig Uy (in fact,

here i, U iy = i Uip) we reach Vr € iy, s € (ig Udp).7 || s. O

Invariant 4.6. (I3) In any reachable configuration V: V{z — (ug,iz),y — (uy,iy)} C V. Vr €

ug. {r} Ciy = {r} C uy.

Proof This proof is by induction, and for each operation the invariant validity is inferred. In this
proof, notation of the form a = b C ¢ signifies a = b and b C c. The invariant {r} C i, = {r} C u,
is checked by verifying that either {r} Z i, or {r} C iy A {r} C u, holds. In the base case, there is

only one element and the invariant holds trivially.

update(a) From V(a) = (u,i) we have V'(a') = (4,4). Suppose any two stamps (uy, iy,), (uy, i)

in V' and Vr' € uy. If (ug,iy) # (4,4) and (uy,4y) # (4,4) then (ug,iz), (uy,4,) occur in V and the

invariant holds from V by induction hypothesis. Otherwise we must consider two cases:

(¢5i5) = (i,4) in which case {r'} I iy since ¢'= i # 4, and (I2).

(cy»iy) = (i,4) in which case (uy,iy) = (u,i) and either: {r} I i, held in V, leading in V'

to {r'} Z dy; or {r} C iy A{r} C uy held in V and becomes induction hypothesis. In

V', {r'} T i, still holds since 4, = iy, and {r'} C ¢ can be inferred, since uj = u, and

{r}Cuy=uli=uy.

fork(a) From V(a) = (u,%) we have V'(a') = (u,40),V'(a") = (u,il). Suppose any two stamps

2 0g), Uy, dy) In V' and Vr' € ug. If (ug,iy) # (u,10), (uy,iy) # (u,il) identical (ug,iz), (uy,iy)

occurred in V' and the invariant is kept. Otherwise consider three cases (the other cases are obtained

by swapping 0 and 1):

21

u'.i’) = (u,10), (ul,7!) # (u,il) in which case there was in V an identical (u,,%,) and for
T’ Yy Y 'y

(ug,iz) = (c,i) we had either: {r} ¥ 4, and consequently {r'} I i; since uj = u = ug; or

we had {r} C 4, A {r} C uy, becoming induction hypothesis. In V', {r'} C 7, still holds, and

! ! : : ! _ —
{r'} € uy, can be inferred, since u; = u; and {r} E uy = u,.

(ug,iy) # (u,90), (uy,iy) = (u,i1) in which case there was in V an identical (uy,i,) and for
(uy,iy) = (u,i) we had either: {r} Z i, =i and consequently {r'} IZ 4; = il since iterated
concatenation cannot revert the [Z relation; or we had {r} C iy A {r} C u,, now becoming

induction hypothesis. Again, in V', {r'} T i; will hold since uj, = u; and {r} i, =i E il =

iy- {r'} C uy also holds, from uy = uy and {r} C uy = u = uy.

(ug,iy) = (u,90), (uy,iy) = (u,41) in which case we known that {r'} T 4, holds, since u; = u C

!

i E 4l =dy. {r'} C uy also holds trivially since uj, = u = uy,.

join(a,b) From V(a) = (ug,%a), V(D) = (up,ip) we have V'(c) = (uq U up,iq L ip). Suppose any
two stamps (ul,, i), (ul,il) in V' and V' € . If none of these stamps matches (u, U up,iq U 7p),

T Yy

identical (ug, i), (ty,4y) occurred in V' and the invariant is kept. Otherwise consider two cases:

(ul, i) = (uq U up,iq L ip) in which case {r'} £ z; will hold in V' if there is a v = 7 in either u,

or uy such that {v} I iy = 4;. Otherwise, {v} C iy A {u} C uy become induction hypothesis,

and both {r'} C 4 =i, and {r'} C u;, = uy hold in V",

(uy,iy) = (ua Uup,iq Uidp) in which case {r'} Z i) = i, Udp will hold in V' if in V' {r} ¥ 4, and
{r} Z iy. Otherwise, one or both of {r} C i, A{r} C ug and {r} C iy A{r} C up hold in V and
become induction hypothesis. In such case, {r'} C 4;, = i, Ll iy can be inferred, since {r} C i,

(or 4p) and iq C iq L dp. Similarly, {r'} € uj, = u, Uy is inferred under this hypothesis.

Proposition 5.1 Given any distributed ezecution with causal histories Cy — C1 — ... — Cy,
and with version stamps Vo — Vi — ... — Vi, it is true that dom(Cy) = dom(Vy) and

Cr(z) CUCk[S] & fst(Vi(z)) C || fst[Vx[S]], for all z € dom(Cy) and § C S C dom(Cy).

22

Proof The proof is by induction. In the base case we have Cy = {a +} for some a and V) = {a»
({e},{€})}; both domains are equal ({a}); and the equivalence holds trivially.

The inductive step for domain equality is trivial, given the definition of each operation, which
transforms each domain in the same way (e.g. compare Definitions 2.1 and 4.3 regarding the
update operation). The inductive step for the family of equivalences consists of, assuming that
the equivalences C(z) C |JCI[S] & fst(V(z)) C [Jfst[V[S]] hold for two given environments C
and V, they will hold for the environments C’, V' that result from applying any of the operations
update, fork, join to C and V, i.e. C'(z) C |JC'[S] & fst(V'(z)) C || fst[V'[S]] will hold. For

each operation we prove the equivalence by showing implication in both directions.

update(a) From the definition of the operation, we have C'(b) = C(a)U{e} for some b, e; V(a) =
(u,4) for some (u,%); V'(b) = (i,4). First we prove (=). Assume C'(z) C |JC'[S]. We must

consider two cases:

b¢ S in which case e ¢ |JC'[S] and also z # b (otherwise we would have e € C'(z) which would
contradict the assumption C'(z) C |J C'[S]); therefore C'(z) = C(z). As also C'|S = C|S (as
b ¢ S), we have C(z) C |JC[S], and by the induction hypothesis fst(V (x)) C || fst[V[S]]. As
also V'(z) = V(z) and V'|S = V|8, it follows trivially that fst(V'(z)) C |] fst[V'[S]].

b€ S The case z = b is trivial. In the case z # b, we have C'(z) = C(x). Let T = §\ {b}; we have
C'|T = C|T. As C'(b) = C(a) U {e}, the assumption becomes C'(z) C |JC'[T]U C(a) U {e};
therefore C(z) C JC[T|U C(a) (as e ¢ C'(z)). By the induction hypothesis, fst(V(z)) C
Ll fst[V[T]] U fst(V (a)). As V(a) = (u,i), V'(b) = (i,4) and u C ¢ from Invariant I;, and also
V(z) =V'(z) and V'|T = V|T', we obtain fst(V'(z)) C | | fst[V'[S]].

Now we prove («<). Assume fst(V'(z)) C || fst[V’[S]]. Again we must consider two cases:

b ¢ S in which case we have also x # b; otherwise we would have V'(z) = V'(b) = (i,1), and there
is no y = (uy,4y) € S such that V(b) C V'(y) (by Invariant 12 4, || ¢ and by I1 u, C iy,
thus wu, || i), which would contradict the induction hypothesis. Therefore C'(z) = C(z),
C'lS = C|S, V'(z) = V(z) and V'|S = V|S and by the induction hypothesis it follows
trivially that C'(z) C | C'[S]

23

be S The case x = b is trivial. Considering z # b, let T = S\ {b}. We have fst(V'(z)) C
L] fst[V'[S]] = | fst[V'[T]]Ufst(V'(b)), and V (z) = V'(z), V'|T = V|T. Tt follows fst(V (z)) C
L fst[V[T]] L fst(V (a)); otherwise we would have s € fst(V(z)) such that {s} C i, {s} Z cin
which case Invariant I3 would not hold. By induction hypothesis, C'(z) = C(z) C |JC[T] U
C(a) and since C'(b) = C(a) U {e}, it follows C'(z) C | C'[T] U C'(b) = |JC'[S]-

fork(a) This case is trivial as from the definitions we have that both causal histories and update

components are preserved in this operation.

join(a,b) From the definition of the operation, we have C’'(c) = C(a) UC(b), for some c. First we

prove (=). Assume C'(z) C |J C'[S]. We must consider two cases:

¢ ¢ S in which case C'|S = C|S, and V'|S = V|S. If z # ¢, we have also C'(z) = C(z) and
V'(z) = V(z); using the induction hypothesis, fst(V/(z)) C | |fst[V’[S]] follows trivially. If
z = ¢, then C'(z) = C(a) U C(b) C JC'[S] = UC[S]. From the induction hypothesis,
we have both fst(V(a)) C || fst[V[S]] and fst(V (b)) C | |fst[V[S]]. Therefore, fst(V(c)) =
fst(V (a)) L fst(V (b)) C || fst[V[S]]-

c € S The case z = c is trivial. In the case z # ¢, let T = S\ {c}. We have C'(z) = C(z) and
C'|T = C|T. From the assumption, as C'(¢) = C(a) U C(b), we obtain C(z) C JC[T]U
C(a) U C(b); By the induction hypothesis: fst(V(z)) C || fst[V[T]] U fst(V (a)) U fst(V(b)).
As also V(z) = V'(z), V'|T = V|T, and fst(V'(c)) = fst(V (a)) U fst(V (b)), it follows that
fst(V'(c)) C LI st[V'[S]]-

Now we prove (<). Assume fst(V'(z)) C | | fst[V'[S]]. Again we must consider two cases:

¢ ¢ S in which case V/|S = V|S and C'|S = C|S. If £ # ¢, we have V'(z) = V(z) and
C'(z) = C(z); using the induction hypothesis, C’(z) C |J C'[S] follows trivially. If z = ¢ we
have fst(V'(z)) = fst(V(a)) U fst(V (b)) C | st[V'[S]] = | {st[V[S]]. From the induction hy-
pothesis, we have both C(a) C |JC[S] and C(b) C |J CI[S]. Therefore, C'(c) = C(a) UC(b) C
Ucisi=Ucis).

24

c €S The case = c is trivial. In the case = # ¢, let T = S\ {c}. We have fst(V'(z)) C
L] fst[V'[S]] = || fst[V'[T]] Ltst (V' (c)), and V(z) = V'(z), V!|T = V|T. It follows fst(V (z)) T
L] fst[V [T]] U fst (V (a)) Lifst(V (b)), and by the induction hypothesis, C'(z) = C(z) € |J C[T]U
Cla) UC() = JCITIUC'(c) = JC'[S].

25

